5 research outputs found

    Compact optimized deep learning model for edge: a review

    Get PDF
    Most real-time computer vision applications, such as pedestrian detection, augmented reality, and virtual reality, heavily rely on convolutional neural networks (CNN) for real-time decision support. In addition, edge intelligence is becoming necessary for low-latency real-time applications to process the data at the source device. Therefore, processing massive amounts of data impact memory footprint, prediction time, and energy consumption, essential performance metrics in machine learning based internet of things (IoT) edge clusters. However, deploying deeper, dense, and hefty weighted CNN models on resource-constraint embedded systems and limited edge computing resources, such as memory, and battery constraints, poses significant challenges in developing the compact optimized model. Reducing the energy consumption in edge IoT networks is possible by reducing the computation and data transmission between IoT devices and gateway devices. Hence there is a high demand for making energy-efficient deep learning models for deploying on edge devices. Furthermore, recent studies show that smaller compressed models achieve significant performance compared to larger deep-learning models. This review article focuses on state-of-the-art techniques of edge intelligence, and we propose a new research framework for designing a compact optimized deep learning (DL) model deployment on edge devices

    Application of improved you only look once model in road traffic monitoring system

    Get PDF
    The present research focuses on developing an intelligent traffic management solution for tracking the vehicles on roads. Our proposed work focuses on a much better you only look once (YOLOv4) traffic monitoring system that uses the CSPDarknet53 architecture as its foundation. Deep-sort learning methodology for vehicle multi-target detection from traffic video is also part of our research study. We have included features like the Kalman filter, which estimates unknown objects and can track moving targets. Hungarian techniques identify the correct frame for the object. We are using enhanced object detection network design and new data augmentation techniques with YOLOv4, which ultimately aids in traffic monitoring. Until recently, object identification models could either perform quickly or draw conclusions quickly. This was a big improvement, as YOLOv4 has an astoundingly good performance for a very high frames per second (FPS). The current study is focused on developing an intelligent video surveillance-based vehicle tracking system that tracks the vehicles using a neural network, image-based tracking, and YOLOv4. Real video sequences of road traffic are used to test the effectiveness of the method that has been suggested in the research. Through simulations, it is demonstrated that the suggested technique significantly increases graphics processing unit (GPU) speed and FSP as compared to baseline algorithms

    Deep learning-based switchable network for in-loop filtering in high efficiency video coding

    Get PDF
    The video codecs are focusing on a smart transition in this era. A future area of research that has not yet been fully investigated is the effect of deep learning on video compression. The paper’s goal is to reduce the ringing and artifacts that loop filtering causes when high-efficiency video compression is used. Even though there is a lot of research being done to lessen this effect, there are still many improvements that can be made. In This paper we have focused on an intelligent solution for improvising in-loop filtering in high efficiency video coding (HEVC) using a deep convolutional neural network (CNN). The paper proposes the design and implementation of deep CNN-based loop filtering using a series of 15 CNN networks followed by a combine and squeeze network that improves feature extraction. The resultant output is free from double enhancement and the peak signal-to-noise ratio is improved by 0.5 dB compared to existing techniques. The experiments then demonstrate that improving the coding efficiency by pipelining this network to the current network and using it for higher quantization parameters (QP) is more effective than using it separately. Coding efficiency is improved by an average of 8.3% with the switching based deep CNN in-loop filtering

    Design and implementation of DA FIR filter for bio-inspired computing architecture

    Get PDF
    This paper elucidates the system construct of DA-FIR filter optimized for design of distributed arithmetic (DA) finite impulse response (FIR) filter and is based on architecture with tightly coupled co-processor based data processing units. With a series of look-up-table (LUT) accesses in order to emulate multiply and accumulate operations the constructed DA based FIR filter is implemented on FPGA. The very high speed integrated circuit hardware description language (VHDL) is used implement the proposed filter and the design is verified using simulation. This paper discusses two optimization algorithms and resulting optimizations are incorporated into LUT layer and architecture extractions. The proposed method offers an optimized design in the form of offers average miminimizations of the number of LUT, reduction in populated slices and gate minimization for DA-finite impulse response filter. This research paves a direction towards development of bio inspired computing architectures developed without logically intensive operations, obtaining the desired specifications with respect to performance, timing, and reliability

    Trends and Open Research Issues in Intelligent Internet of Vehicles

    No full text
    The evolution of vehicles has always been continuous with respect to growth in technology.The concept of the Internet of Vehicles (IoV) is the process of allowing vehicles to interact with each other to provide real-time information. This paper introduces the various aspects of IoV and their components. Despite the fact that there are more and more vehicles connected to the IoV, there are still many unknown issues and potentials that needs to be identified to carry out research. In order to identify and classify the current difficulties in implementing and using IoV in urban cities, various research publications on the topic were analysed in this paper. The limitations of the Internet of Vehicular technology are also described. Additionally, a number of current and potential remedies that address the highlighted problems were briefly covered. The background information and reasons for evolving heterogeneous vehicular networks are thoroughly reviewed in this research. Also highlights the key technologies of IoV, network architecture and comparison of IoV architecture models with focus on different communication models The most modern IoV enabling technologies are also highlighted, along with environmental scope of intelligent internet of vehicles. Finally, the paper has reviewed the open research issues of Intelligent IoV such as Poor Connectivity of on road vehicles and Stability, Hard delay constraints, High reliability requirements, high scalability, Security and privacy, etc. and related solutions
    corecore